Serveur d'exploration sur la glutarédoxine

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

ROS and RNS signalling: adaptive redox switches through oxidative/nitrosative protein modifications.

Identifieur interne : 000229 ( Main/Exploration ); précédent : 000228; suivant : 000230

ROS and RNS signalling: adaptive redox switches through oxidative/nitrosative protein modifications.

Auteurs : N T Moldogazieva [Russie] ; I M Mokhosoev [Russie] ; N B Feldman [Russie] ; S V Lutsenko [Russie]

Source :

RBID : pubmed:29589770

Descripteurs français

English descriptors

Abstract

Over the last decade, a dual character of cell response to oxidative stress, eustress versus distress, has become increasingly recognized. A growing body of evidence indicates that under physiological conditions, low concentrations of reactive oxygen and nitrogen species (RONS) maintained by the activity of endogenous antioxidant system (AOS) allow reversible oxidative/nitrosative modifications of key redox-sensitive residues in regulatory proteins. The reversibility of redox modifications such as Cys S-sulphenylation/S-glutathionylation/S-nitrosylation/S-persulphidation and disulphide bond formation, or Tyr nitration, which occur through electrophilic attack of RONS to nucleophilic groups in amino acid residues provides redox switches in the activities of signalling proteins. Key requirement for the involvement of the redox modifications in RONS signalling including ROS-MAPK, ROS-PI3K/Akt, and RNS-TNF-α/NF-kB signalling is their specificity provided by a residue microenvironment and reaction kinetics. Glutathione, glutathione peroxidases, peroxiredoxins, thioredoxin, glutathione reductases, and glutaredoxins modulate RONS level and cell signalling, while some of the modulators (glutathione, glutathione peroxidases and peroxiredoxins) are themselves targets for redox modifications. Additionally, gene expression, activities of transcription factors, and epigenetic pathways are also under redox regulation. The present review focuses on RONS sources (NADPH-oxidases, mitochondrial electron-transportation chain (ETC), nitric oxide synthase (NOS), etc.), and their cross-talks, which influence reversible redox modifications of proteins as physiological phenomenon attained by living cells during the evolution to control cell signalling in the oxygen-enriched environment. We discussed recent advances in investigation of mechanisms of protein redox modifications and adaptive redox switches such as MAPK/PI3K/PTEN, Nrf2/Keap1, and NF-κB/IκB, powerful regulators of numerous physiological processes, also implicated in various diseases.

DOI: 10.1080/10715762.2018.1457217
PubMed: 29589770


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">ROS and RNS signalling: adaptive redox switches through oxidative/nitrosative protein modifications.</title>
<author>
<name sortKey="Moldogazieva, N T" sort="Moldogazieva, N T" uniqKey="Moldogazieva N" first="N T" last="Moldogazieva">N T Moldogazieva</name>
<affiliation wicri:level="1">
<nlm:affiliation>a Department of Biotechnology, I.M. Sechenov First Moscow State Medical University (Sechenov University) , Moscow , Russia.</nlm:affiliation>
<country xml:lang="fr">Russie</country>
<wicri:regionArea>a Department of Biotechnology, I.M. Sechenov First Moscow State Medical University (Sechenov University) , Moscow </wicri:regionArea>
<wicri:noRegion>Moscow </wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Mokhosoev, I M" sort="Mokhosoev, I M" uniqKey="Mokhosoev I" first="I M" last="Mokhosoev">I M Mokhosoev</name>
<affiliation wicri:level="1">
<nlm:affiliation>a Department of Biotechnology, I.M. Sechenov First Moscow State Medical University (Sechenov University) , Moscow , Russia.</nlm:affiliation>
<country xml:lang="fr">Russie</country>
<wicri:regionArea>a Department of Biotechnology, I.M. Sechenov First Moscow State Medical University (Sechenov University) , Moscow </wicri:regionArea>
<wicri:noRegion>Moscow </wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Feldman, N B" sort="Feldman, N B" uniqKey="Feldman N" first="N B" last="Feldman">N B Feldman</name>
<affiliation wicri:level="1">
<nlm:affiliation>a Department of Biotechnology, I.M. Sechenov First Moscow State Medical University (Sechenov University) , Moscow , Russia.</nlm:affiliation>
<country xml:lang="fr">Russie</country>
<wicri:regionArea>a Department of Biotechnology, I.M. Sechenov First Moscow State Medical University (Sechenov University) , Moscow </wicri:regionArea>
<wicri:noRegion>Moscow </wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Lutsenko, S V" sort="Lutsenko, S V" uniqKey="Lutsenko S" first="S V" last="Lutsenko">S V Lutsenko</name>
<affiliation wicri:level="1">
<nlm:affiliation>a Department of Biotechnology, I.M. Sechenov First Moscow State Medical University (Sechenov University) , Moscow , Russia.</nlm:affiliation>
<country xml:lang="fr">Russie</country>
<wicri:regionArea>a Department of Biotechnology, I.M. Sechenov First Moscow State Medical University (Sechenov University) , Moscow </wicri:regionArea>
<wicri:noRegion>Moscow </wicri:noRegion>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2018">2018</date>
<idno type="RBID">pubmed:29589770</idno>
<idno type="pmid">29589770</idno>
<idno type="doi">10.1080/10715762.2018.1457217</idno>
<idno type="wicri:Area/Main/Corpus">000252</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000252</idno>
<idno type="wicri:Area/Main/Curation">000252</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000252</idno>
<idno type="wicri:Area/Main/Exploration">000252</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">ROS and RNS signalling: adaptive redox switches through oxidative/nitrosative protein modifications.</title>
<author>
<name sortKey="Moldogazieva, N T" sort="Moldogazieva, N T" uniqKey="Moldogazieva N" first="N T" last="Moldogazieva">N T Moldogazieva</name>
<affiliation wicri:level="1">
<nlm:affiliation>a Department of Biotechnology, I.M. Sechenov First Moscow State Medical University (Sechenov University) , Moscow , Russia.</nlm:affiliation>
<country xml:lang="fr">Russie</country>
<wicri:regionArea>a Department of Biotechnology, I.M. Sechenov First Moscow State Medical University (Sechenov University) , Moscow </wicri:regionArea>
<wicri:noRegion>Moscow </wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Mokhosoev, I M" sort="Mokhosoev, I M" uniqKey="Mokhosoev I" first="I M" last="Mokhosoev">I M Mokhosoev</name>
<affiliation wicri:level="1">
<nlm:affiliation>a Department of Biotechnology, I.M. Sechenov First Moscow State Medical University (Sechenov University) , Moscow , Russia.</nlm:affiliation>
<country xml:lang="fr">Russie</country>
<wicri:regionArea>a Department of Biotechnology, I.M. Sechenov First Moscow State Medical University (Sechenov University) , Moscow </wicri:regionArea>
<wicri:noRegion>Moscow </wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Feldman, N B" sort="Feldman, N B" uniqKey="Feldman N" first="N B" last="Feldman">N B Feldman</name>
<affiliation wicri:level="1">
<nlm:affiliation>a Department of Biotechnology, I.M. Sechenov First Moscow State Medical University (Sechenov University) , Moscow , Russia.</nlm:affiliation>
<country xml:lang="fr">Russie</country>
<wicri:regionArea>a Department of Biotechnology, I.M. Sechenov First Moscow State Medical University (Sechenov University) , Moscow </wicri:regionArea>
<wicri:noRegion>Moscow </wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Lutsenko, S V" sort="Lutsenko, S V" uniqKey="Lutsenko S" first="S V" last="Lutsenko">S V Lutsenko</name>
<affiliation wicri:level="1">
<nlm:affiliation>a Department of Biotechnology, I.M. Sechenov First Moscow State Medical University (Sechenov University) , Moscow , Russia.</nlm:affiliation>
<country xml:lang="fr">Russie</country>
<wicri:regionArea>a Department of Biotechnology, I.M. Sechenov First Moscow State Medical University (Sechenov University) , Moscow </wicri:regionArea>
<wicri:noRegion>Moscow </wicri:noRegion>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Free radical research</title>
<idno type="eISSN">1029-2470</idno>
<imprint>
<date when="2018" type="published">2018</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Animals (MeSH)</term>
<term>Glutathione Peroxidase (metabolism)</term>
<term>Humans (MeSH)</term>
<term>Mitogen-Activated Protein Kinases (metabolism)</term>
<term>NF-E2-Related Factor 2 (metabolism)</term>
<term>NF-kappa B (metabolism)</term>
<term>Nitrosation (MeSH)</term>
<term>Oxidation-Reduction (MeSH)</term>
<term>PTEN Phosphohydrolase (metabolism)</term>
<term>Peroxiredoxins (metabolism)</term>
<term>Phosphatidylinositol 3-Kinases (metabolism)</term>
<term>Protein Processing, Post-Translational (MeSH)</term>
<term>Proto-Oncogene Proteins c-akt (metabolism)</term>
<term>Reactive Nitrogen Species (metabolism)</term>
<term>Reactive Oxygen Species (metabolism)</term>
<term>Thioredoxins (metabolism)</term>
<term>Tumor Necrosis Factor-alpha (metabolism)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Animaux (MeSH)</term>
<term>Espèces réactives de l'azote (métabolisme)</term>
<term>Espèces réactives de l'oxygène (métabolisme)</term>
<term>Facteur de nécrose tumorale alpha (métabolisme)</term>
<term>Facteur de transcription NF-kappa B (métabolisme)</term>
<term>Facteur-2 apparenté à NF-E2 (métabolisme)</term>
<term>Glutathione peroxidase (métabolisme)</term>
<term>Humains (MeSH)</term>
<term>Maturation post-traductionnelle des protéines (MeSH)</term>
<term>Mitogen-Activated Protein Kinases (métabolisme)</term>
<term>Nitrosation (MeSH)</term>
<term>Oxydoréduction (MeSH)</term>
<term>Peroxirédoxines (métabolisme)</term>
<term>Phosphatidylinositol 3-kinases (métabolisme)</term>
<term>Phosphohydrolase PTEN (métabolisme)</term>
<term>Protéines proto-oncogènes c-akt (métabolisme)</term>
<term>Thiorédoxines (métabolisme)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Glutathione Peroxidase</term>
<term>Mitogen-Activated Protein Kinases</term>
<term>NF-E2-Related Factor 2</term>
<term>NF-kappa B</term>
<term>PTEN Phosphohydrolase</term>
<term>Peroxiredoxins</term>
<term>Phosphatidylinositol 3-Kinases</term>
<term>Proto-Oncogene Proteins c-akt</term>
<term>Reactive Nitrogen Species</term>
<term>Reactive Oxygen Species</term>
<term>Thioredoxins</term>
<term>Tumor Necrosis Factor-alpha</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Espèces réactives de l'azote</term>
<term>Espèces réactives de l'oxygène</term>
<term>Facteur de nécrose tumorale alpha</term>
<term>Facteur de transcription NF-kappa B</term>
<term>Facteur-2 apparenté à NF-E2</term>
<term>Glutathione peroxidase</term>
<term>Mitogen-Activated Protein Kinases</term>
<term>Peroxirédoxines</term>
<term>Phosphatidylinositol 3-kinases</term>
<term>Phosphohydrolase PTEN</term>
<term>Protéines proto-oncogènes c-akt</term>
<term>Thiorédoxines</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Animals</term>
<term>Humans</term>
<term>Nitrosation</term>
<term>Oxidation-Reduction</term>
<term>Protein Processing, Post-Translational</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Animaux</term>
<term>Humains</term>
<term>Maturation post-traductionnelle des protéines</term>
<term>Nitrosation</term>
<term>Oxydoréduction</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Over the last decade, a dual character of cell response to oxidative stress, eustress versus distress, has become increasingly recognized. A growing body of evidence indicates that under physiological conditions, low concentrations of reactive oxygen and nitrogen species (RONS) maintained by the activity of endogenous antioxidant system (AOS) allow reversible oxidative/nitrosative modifications of key redox-sensitive residues in regulatory proteins. The reversibility of redox modifications such as Cys S-sulphenylation/S-glutathionylation/S-nitrosylation/S-persulphidation and disulphide bond formation, or Tyr nitration, which occur through electrophilic attack of RONS to nucleophilic groups in amino acid residues provides redox switches in the activities of signalling proteins. Key requirement for the involvement of the redox modifications in RONS signalling including ROS-MAPK, ROS-PI3K/Akt, and RNS-TNF-α/NF-kB signalling is their specificity provided by a residue microenvironment and reaction kinetics. Glutathione, glutathione peroxidases, peroxiredoxins, thioredoxin, glutathione reductases, and glutaredoxins modulate RONS level and cell signalling, while some of the modulators (glutathione, glutathione peroxidases and peroxiredoxins) are themselves targets for redox modifications. Additionally, gene expression, activities of transcription factors, and epigenetic pathways are also under redox regulation. The present review focuses on RONS sources (NADPH-oxidases, mitochondrial electron-transportation chain (ETC), nitric oxide synthase (NOS), etc.), and their cross-talks, which influence reversible redox modifications of proteins as physiological phenomenon attained by living cells during the evolution to control cell signalling in the oxygen-enriched environment. We discussed recent advances in investigation of mechanisms of protein redox modifications and adaptive redox switches such as MAPK/PI3K/PTEN, Nrf2/Keap1, and NF-κB/IκB, powerful regulators of numerous physiological processes, also implicated in various diseases.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">29589770</PMID>
<DateCompleted>
<Year>2018</Year>
<Month>09</Month>
<Day>27</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>09</Month>
<Day>27</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1029-2470</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>52</Volume>
<Issue>5</Issue>
<PubDate>
<Year>2018</Year>
<Month>May</Month>
</PubDate>
</JournalIssue>
<Title>Free radical research</Title>
<ISOAbbreviation>Free Radic Res</ISOAbbreviation>
</Journal>
<ArticleTitle>ROS and RNS signalling: adaptive redox switches through oxidative/nitrosative protein modifications.</ArticleTitle>
<Pagination>
<MedlinePgn>507-543</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1080/10715762.2018.1457217</ELocationID>
<Abstract>
<AbstractText>Over the last decade, a dual character of cell response to oxidative stress, eustress versus distress, has become increasingly recognized. A growing body of evidence indicates that under physiological conditions, low concentrations of reactive oxygen and nitrogen species (RONS) maintained by the activity of endogenous antioxidant system (AOS) allow reversible oxidative/nitrosative modifications of key redox-sensitive residues in regulatory proteins. The reversibility of redox modifications such as Cys S-sulphenylation/S-glutathionylation/S-nitrosylation/S-persulphidation and disulphide bond formation, or Tyr nitration, which occur through electrophilic attack of RONS to nucleophilic groups in amino acid residues provides redox switches in the activities of signalling proteins. Key requirement for the involvement of the redox modifications in RONS signalling including ROS-MAPK, ROS-PI3K/Akt, and RNS-TNF-α/NF-kB signalling is their specificity provided by a residue microenvironment and reaction kinetics. Glutathione, glutathione peroxidases, peroxiredoxins, thioredoxin, glutathione reductases, and glutaredoxins modulate RONS level and cell signalling, while some of the modulators (glutathione, glutathione peroxidases and peroxiredoxins) are themselves targets for redox modifications. Additionally, gene expression, activities of transcription factors, and epigenetic pathways are also under redox regulation. The present review focuses on RONS sources (NADPH-oxidases, mitochondrial electron-transportation chain (ETC), nitric oxide synthase (NOS), etc.), and their cross-talks, which influence reversible redox modifications of proteins as physiological phenomenon attained by living cells during the evolution to control cell signalling in the oxygen-enriched environment. We discussed recent advances in investigation of mechanisms of protein redox modifications and adaptive redox switches such as MAPK/PI3K/PTEN, Nrf2/Keap1, and NF-κB/IκB, powerful regulators of numerous physiological processes, also implicated in various diseases.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Moldogazieva</LastName>
<ForeName>N T</ForeName>
<Initials>NT</Initials>
<Identifier Source="ORCID">http://orcid.org/0000-0002-9814-2300</Identifier>
<AffiliationInfo>
<Affiliation>a Department of Biotechnology, I.M. Sechenov First Moscow State Medical University (Sechenov University) , Moscow , Russia.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Mokhosoev</LastName>
<ForeName>I M</ForeName>
<Initials>IM</Initials>
<Identifier Source="ORCID">http://orcid.org/0000-0001-6127-3545</Identifier>
<AffiliationInfo>
<Affiliation>a Department of Biotechnology, I.M. Sechenov First Moscow State Medical University (Sechenov University) , Moscow , Russia.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Feldman</LastName>
<ForeName>N B</ForeName>
<Initials>NB</Initials>
<Identifier Source="ORCID">http://orcid.org/0000-0001-6098-2788</Identifier>
<AffiliationInfo>
<Affiliation>a Department of Biotechnology, I.M. Sechenov First Moscow State Medical University (Sechenov University) , Moscow , Russia.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Lutsenko</LastName>
<ForeName>S V</ForeName>
<Initials>SV</Initials>
<Identifier Source="ORCID">http://orcid.org/0000-0002-2017-6025</Identifier>
<AffiliationInfo>
<Affiliation>a Department of Biotechnology, I.M. Sechenov First Moscow State Medical University (Sechenov University) , Moscow , Russia.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D016454">Review</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2018</Year>
<Month>04</Month>
<Day>19</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>England</Country>
<MedlineTA>Free Radic Res</MedlineTA>
<NlmUniqueID>9423872</NlmUniqueID>
<ISSNLinking>1029-2470</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D051267">NF-E2-Related Factor 2</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D016328">NF-kappa B</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="C495635">NFE2L2 protein, human</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D026361">Reactive Nitrogen Species</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D017382">Reactive Oxygen Species</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D014409">Tumor Necrosis Factor-alpha</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>52500-60-4</RegistryNumber>
<NameOfSubstance UI="D013879">Thioredoxins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 1.11.1.15</RegistryNumber>
<NameOfSubstance UI="D054464">Peroxiredoxins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 1.11.1.9</RegistryNumber>
<NameOfSubstance UI="D005979">Glutathione Peroxidase</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 2.7.1.-</RegistryNumber>
<NameOfSubstance UI="D019869">Phosphatidylinositol 3-Kinases</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 2.7.11.1</RegistryNumber>
<NameOfSubstance UI="D051057">Proto-Oncogene Proteins c-akt</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 2.7.11.24</RegistryNumber>
<NameOfSubstance UI="D020928">Mitogen-Activated Protein Kinases</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 3.1.3.67</RegistryNumber>
<NameOfSubstance UI="D051059">PTEN Phosphohydrolase</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000818" MajorTopicYN="N">Animals</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005979" MajorTopicYN="N">Glutathione Peroxidase</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006801" MajorTopicYN="N">Humans</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D020928" MajorTopicYN="N">Mitogen-Activated Protein Kinases</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D051267" MajorTopicYN="N">NF-E2-Related Factor 2</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D016328" MajorTopicYN="N">NF-kappa B</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D015538" MajorTopicYN="N">Nitrosation</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010084" MajorTopicYN="N">Oxidation-Reduction</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D051059" MajorTopicYN="N">PTEN Phosphohydrolase</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D054464" MajorTopicYN="N">Peroxiredoxins</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D019869" MajorTopicYN="N">Phosphatidylinositol 3-Kinases</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011499" MajorTopicYN="Y">Protein Processing, Post-Translational</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D051057" MajorTopicYN="N">Proto-Oncogene Proteins c-akt</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D026361" MajorTopicYN="N">Reactive Nitrogen Species</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017382" MajorTopicYN="N">Reactive Oxygen Species</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013879" MajorTopicYN="N">Thioredoxins</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014409" MajorTopicYN="N">Tumor Necrosis Factor-alpha</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
</MeshHeadingList>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="N">Cell signalling</Keyword>
<Keyword MajorTopicYN="N">ROS/RNS signalling</Keyword>
<Keyword MajorTopicYN="N">nitrosative protein modification</Keyword>
<Keyword MajorTopicYN="N">oxidative protein modification</Keyword>
<Keyword MajorTopicYN="N">reactive nitrogen species</Keyword>
<Keyword MajorTopicYN="N">reactive oxygen species</Keyword>
<Keyword MajorTopicYN="N">redox switches</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="pubmed">
<Year>2018</Year>
<Month>3</Month>
<Day>29</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2018</Year>
<Month>9</Month>
<Day>28</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2018</Year>
<Month>3</Month>
<Day>29</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">29589770</ArticleId>
<ArticleId IdType="doi">10.1080/10715762.2018.1457217</ArticleId>
</ArticleIdList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>Russie</li>
</country>
</list>
<tree>
<country name="Russie">
<noRegion>
<name sortKey="Moldogazieva, N T" sort="Moldogazieva, N T" uniqKey="Moldogazieva N" first="N T" last="Moldogazieva">N T Moldogazieva</name>
</noRegion>
<name sortKey="Feldman, N B" sort="Feldman, N B" uniqKey="Feldman N" first="N B" last="Feldman">N B Feldman</name>
<name sortKey="Lutsenko, S V" sort="Lutsenko, S V" uniqKey="Lutsenko S" first="S V" last="Lutsenko">S V Lutsenko</name>
<name sortKey="Mokhosoev, I M" sort="Mokhosoev, I M" uniqKey="Mokhosoev I" first="I M" last="Mokhosoev">I M Mokhosoev</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/GlutaredoxinV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000229 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000229 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    GlutaredoxinV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:29589770
   |texte=   ROS and RNS signalling: adaptive redox switches through oxidative/nitrosative protein modifications.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:29589770" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a GlutaredoxinV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 15:13:42 2020. Site generation: Wed Nov 18 15:16:12 2020